Mesh Intermediary Representation
Release 0.1.1

Petar Maric¢

Aug 29, 2019

Contents

1 MIR concepts 3
.1 Identifiers o . e e e e e e 3
1.1.1 Non-standard identifiers e 3

1.2 Datatypes e e e 3

1.3 Attributes e e e 4

LA Datasets o v v v it e e e e e e e e e e e e e 4

1.5 Layers . . . v o o e e e e e e e e e e e e e e 4
1.5.1 geometrylayer e e e e e 4

1.5.2 metadatalayer e 5

2 MIR file format 7
2.1 HDFSkey concepts i v ittt e e e 7

2.2 Mapping MIR conceptsonto HDF5 oo oo 8

2.3 Recommended optimizations oo i L i e e e e e 8
2.3.1 Chunked storage layout e e e e e e e e 8

2.3.2 Compression and error detectiono e e e e e 9

3 Example programs and data files 11
3.1 CreatingaMIR datafile e e e e 11

3.2 Reading fromaMIRdatafile e 12
Bibliography 13

Mesh Intermediary Representation, Release 0.1.1

The Mesh Intermediary Representation (MIR) specification is an open standard describing a platform-neutral data
format for long-term storage and interchange of mesh-like data.

It has also been designed to serve as an intermediary step when converting the mesh-like data between different
computational mechanics application formats.

You can read the MIR specification online, or download a printable PDF.

This research is based upon the previous work by Peter Ivanyi [Ivanyi2012] [Ivanyi2014].

Contents 1

http://mir-spec.readthedocs.io/
https://readthedocs.org/projects/mir-spec/downloads/

Mesh Intermediary Representation, Release 0.1.1

2 Contents

cHAPTER 1

MIR concepts

Warning: A valid MIR data file must contain all of the layers, datasets and attributes defined by this specifi-
cation, even if some of them are empty.

1.1 Ildentifiers

Identifiers (also referred to as names) are described by the following lexical definitions:

identifier = first_word ("_" word) *
first_word letter [word]

word = (letter | digit)+
letter = "at.., . "z"
digit = "or..."9"

where 1et ter has to be a lowercase ASCII character.

1.1.1 Non-standard identifiers

Non-standard or vendor specific identifiers must have their names prefixed with _x_:

n

non_standard_identifier = _x " identifier

1.2 Data types

MIR specification defines the following atomic data types:
* integer numbers (signed)
* floating point numbers

* Unicode strings

Mesh Intermediary Representation, Release 0.1.1

Data elements using non-standard or vendor specific data types must use a non-standard identifier for their name
and are beyond the scope of MIR specification.

1.3 Attributes

An attribute is a small metadata object attached directly to a dataset or a layer, used to describe their nature and/or
intended usage.

Non-standard or vendor specific attributes must use a non-standard identifier for their name and are beyond the
scope of MIR specification.

1.4 Datasets

A dataset is a rectangular 2D array (generally known as a matrix) of data elements, arranged in rows and columns.

A dataset may use different data types for each column, but all data elements within a single column must be of
the same data type.

Non-standard or vendor specific datasets must use a non-standard identifier for their name and are beyond the
scope of MIR specification.

1.5 Layers

Layers are used to organize individual features and properties of a MIR data file into separate logical groups.

Non-standard or vendor specific layers must use a non-standard identifier for their name and are beyond the scope
of MIR specification.

A MIR data file is composed of the following layers:

1.5.1 geometry layer

The geomet ry layer has the following geometry primitives, each stored in a separate dataset:

Dataset name Vertices | Edges | Faces | Dimensions
lines 2 1 0 1
triangles 3 3 1 2
quads 4 4 1 2
hexagons 6 6 1 2
tetrahedrons | 4 6 4 3
cuboids 8 12 6 3

A vertex is a point in 3D space whose coordinates are defined asa (x, y, z) triplet, while a single coordinate
is represented by a floating point number.

Each dataset stores a single geometry primitive per row, and has 3 times as many columns as its corresponding
geometry primitive has vertices. This is because only the coordinates are stored, and each vertex is defined by 3
coordinates.

For example, the quads dataset requires 12 columns to store its coordinates, as it has 4 vertices. A single row of
this dataset would be layed out like so:

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 4.3

4 Chapter 1. MIR concepts

Mesh Intermediary Representation, Release 0.1.1

Each dataset also has the following attributes attached to it:
num_vertices Number of vertices, stored as an integer number.
num_coordinates Number of coordinates, stored as an integer number.

Equal to: num_vertices % 3

1.5.2 metadata layer
The metadata layer has no datasets, and instead uses the following attributes to further describe the MIR data
file:
generator_name Name of the program that created the file, stored as a Unicode string.
For example: foobar
generator_version Version of the program that created the file, stored as a Unicode string.
For example: 1.0.3
mir_version Version of MIR specification used when creating the file, stored as a Unicode string.
For example: 1.12.3
created_at Date and time at which the file was created, stored as a Unicode string in ISO 8601 format.

For example: 2017-08-15T13:51:02+02:00

1.5. Layers 5

Mesh Intermediary Representation, Release 0.1.1

6 Chapter 1. MIR concepts

CHAPTER 2

MIR file format

MIR is backed up by the HDF5 data file format.

HDFS5 is an extensible and open standard, comprised of platform independent technologies which are available
under Open Source licenses. HDF5 format has been designed with the objective of creating data storages that are
self-descriptive, flexible, and have extremely fast and efficient access patterns to the stored data.

Note: Although not mandatory, MIR data files should have the .mir extension (lowercase), for easier identifi-
cation on the file system.

2.1 HDF5 key concepts

Although HDFS5 key concepts are best explained by the HDF5 User’s Guide, a quick overview is given bellow for
readers convenience:

Group A collection of HDFS5 objects (including other groups).

As suggested by its name “Hierarchical Data Format”, an HDFS file is hierarchically structured, like a tree.
This tree structure is very similar to the file system structures employed on UNIX systems, with directories
and files. HDF5 groups are analogous to the directories, HDFS5 datasets are analogous to the files.

Every HDF5 data file has at least one object, the root group. All other objects (including groups) are either
members of the root group or its descendants.

Dataset A multidimensional array of data elements, together with supporting metadata.

An HDFS5 dataset is an object composed of a collection of data elements and metadata that stores a descrip-
tion of the data elements, data layout, and all other information necessary to write, read, and interpret the
stored data.

Data type A description of a specific class of data element including its storage layout as a pattern of bits.

HDFS5 data types implement a flexible, extensible, and portable mechanism for specifying and discovering
the storage layout of the data elements, determining how to interpret the elements (for example, as floating
point numbers), and for transferring data from different compatible layouts.

Atomic data types are indivisible. Composite data types are composed of multiple elements of atomic data
types.

https://www.hdfgroup.org/hdf5/
https://support.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide-Responsive%20HTML5/

Mesh Intermediary Representation, Release 0.1.1

In addition to the standard types, users can define additional custom data types.
Attribute A small metadata object attached to a group or a dataset.

Attributes are a critical part of what makes HDFS a “self-describing” format. They are small named pieces
of data attached directly to group or dataset objects. This is the official way to store metadata in HDF5.

2.2 Mapping MIR concepts onto HDF5

In general, MIR concepts map cleanly onto their HDF5 counterparts:

MIR HDF5
Data type | Data type
Attribute | Attribute
Dataset Dataset
Layer Group

Detailed MIR/HDFS5 data type map:
* integer numbers are stored as 32-bit signed integers, using the H5T__STD_ I32LE HDF5 data type
* floating point numbers are stored as IEEE 754 binary64, using the H5T_IEEE_F 64LE HDFS5 data type
¢ all Unicode strings are UTF-8 encoded

Additionally, each MIR layer (HDF5 group) is a child of the root HDF5 group.

2.3 Recommended optimizations

2.3.1 Chunked storage layout

What is chunking:

The storage layout defines how the raw data values in the dataset are physically stored on disk. There
are three ways that a dataset can be stored: contiguous, chunked, and compact.

If the storage layout is contiguous, then the raw data values will be stored physically adjacent to each
other in the HDFS5 file (in one contiguous block). This is the default layout for a dataset.

With a chunked storage layout the data is stored in equal-sized blocks or chunks of a pre-defined
size. The HDFS5 library always writes and reads the entire chunk. Each chunk is stored as a separate
contiguous block in the HDFS5 file. There is a chunk index which keeps track of the chunks associated
with a dataset.

Chunked storage makes it possible to resize datasets, and because the data is stored in fixed-size
chunks, to use compression filters.

—https://support.hdfgroup.org/HDF5/Tutor/layout.html

Although not mandatory, it’s still strongly advised to use the chunked storage layout when creating MIR data files
to improve processing performance:

It is commonly used when subsetting very large datasets. Using the chunking layout can greatly
improve performance when subsetting large datasets, because only the chunks required will need to
be accessed. However, it is easy to use chunking without considering the consequences of the chunk
size, which can lead to strikingly poor performance.

If a very small chunk size is specified for a dataset it can cause the dataset to be excessively large
and it can result in degraded performance when accessing the dataset. The smaller the chunk size the
more chunks that HDFS5 has to keep track of, and the more time it will take to search for a chunk.

8 Chapter 2. MIR file format

https://support.hdfgroup.org/HDF5/Tutor/layout.html

Mesh Intermediary Representation, Release 0.1.1

An entire chunk has to be read and uncompressed before performing an operation. There can be
a performance penalty for reading a small subset, if the chunk size is substantially larger than the
subset.

—https://support.hdfgroup.org/HDF5/Tutor/layout.html

2.3.2 Compression and error detection

When an HDF5 dataset is created, optional filters can be specified. These filters are added to the data trans-
fer pipeline when data is read or written. The HDF5 standard library includes filters to implement transparent
compression, data shuffling, and error detection code.

Warning: To apply a filter to an HDFS dataset it must be created with a chunked storage layout.

Although not mandatory, it’s still strongly advised to apply the following filters when creating MIR data files to
minimize disk storage requirements and improve processing performance:

Compression Enable the transparent compression filter to save storage space.

Data is compressed on the way to disk, and automatically decompressed when read. Once the dataset is
created with a particular compression filter applied, data may be read and written as normal with no special
steps required.

Although many interesting 3rd party compression filters are supported, HDFS5 itself provides only 2 pre-
defined filters for compression by default: ZLIB and SZIP. SZIP can’t be used freely due to licensing issues,
therefore ZLIB is recommended for maximum portability.

For best overall ZLIB performance the PyTables optimization guide advises the lowest compression level
(1) to be used.

Shuffle Enable the shuffle filter to improve the compression ratio.

Block-oriented compressors work better when presented with runs of similar values. The shuffle filter
rearranges the bytes in the chunk and may improve compression ratio. No significant speed penalty.

Fletcher32 Adds an error detection checksum to each chunk to detect data corruption.

Attempts to read corrupted chunks will fail with an error. No significant speed penalty.

2.3. Recommended optimizations 9

https://support.hdfgroup.org/HDF5/Tutor/layout.html
https://support.hdfgroup.org/services/filters.html
http://www.pytables.org/usersguide/optimization.html#compression-issues

Mesh Intermediary Representation, Release 0.1.1

10 Chapter 2. MIR file format

CHAPTER 3

Example programs and data files

An example MIR data file, filled with random data, is available on our GitHub repository, under examples/
random—-data.mir

3.1 Creating a MIR data file

The following Python program creates a MIR data file, filled with random data:

from datetime import datetime
import os

import numpy as np

import tables as tb

from tzlocal import get_localzone
filename = 'random-data.mir'

sample_num_rows = 100
geometry_primitives = [

~

~

~

~

~
Q0 oY D W N
~

~

filters = tb.Filters(complib='z1ib'"', complevel=1l, shuffle=True, fletcher32=True)
with tb.open_file(filename, 'w', filters=filters) as fp:
geometry_layer = fp.create_group (where='/"', name='geometry')
for dataset_name, num_vertices in geometry_primitives:
num_coordinates = num_vertices * 3

dataset = fp.create_earray(

11

https://github.com/petarmaric/mir

Mesh Intermediary Representation, Release 0.1.1

where=geometry_layer,

name=dataset_name,

atom=tb.Float64Atom(),

shape=(0, num_coordinates),
)
dataset._v_attrs.num _vertices = num_vertices
dataset._v_attrs.num _coordinates = num_coordinates

dataset.append (np.random.rand (sample_num_rows, num_coordinates))

metadata_layer = fp.create_group(where='/', name='metadata')

metadata_layer._v_attrs.generator_name = _ file

metadata_layer._v_attrs.generator_version = '1.0'

metadata_layer._v_attrs.mir_version = '0.1'

metadata_layer._v_attrs.created_at = datetime.now(get_localzone()) .replace
microsecond=0

) .isoformat ()

Note: The geomet ry layer, while structurally valid, may not contain valid geometry primitives due to randomly
generated coordinates.

3.2 Reading from a MIR data file

The following Python program reads some data from a MIR data file:

import tables as tb

filename = 'random-data.mir'

with tb.open_file(filename) as fp:
'Loading the °~/geometry/quads’

dataset = fp.root.geometry.quads

'"\nFirst 5 geometr primitives in the dataset:'

dataset [:5]

\nLast vertex of the first

dataset[:5, =3:]

'"\n num_vertices® dataset attribute:',

dataset._v_attrs.num_vertices

12 Chapter 3. Example programs and data files

Bibliography

[Ivanyi2012] Ivanyi P. Finite element mesh conversion based on regular expressions. Advances in Engineering
Software. 2012;51:20-39.

[Ivanyi2014] Ivanyi P. A Technique for the Long Term Preservation of Finite Element Meshes. In: 2014 IEEE
Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace
Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS). IEEE;
2014. p. 116-120.

13

	MIR concepts
	Identifiers
	Non-standard identifiers

	Data types
	Attributes
	Datasets
	Layers
	geometry layer
	metadata layer

	MIR file format
	HDF5 key concepts
	Mapping MIR concepts onto HDF5
	Recommended optimizations
	Chunked storage layout
	Compression and error detection

	Example programs and data files
	Creating a MIR data file
	Reading from a MIR data file

	Bibliography

